Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.770
Filtrar
1.
Sci Total Environ ; 927: 172395, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608882

RESUMO

PVC microplastics (PVC-MPs) are environmental pollutants that interact with cadmium (Cd) to exert various biological effects. Ducks belong to the waterfowl family of birds and therefore are at a higher risk of exposure to PVC-MPs and Cd than other animals. However, the effects of co-exposure of ducks to Cd and PVC-MPs are poorly understood. Here, we used Muscovy ducks to establish an in vivo model to explore the effects of co-exposure to 1 mg/L PVC-MPs and 50 mg/kg Cd on duck pancreas. After 2 months of treatment with 50 mg/kg Cd, pancreas weight decreased by 21 %, and the content of amylase and lipase increased by 25 % and 233 %. However, exposure to PVC-MPs did not significantly affect the pancreas. Moreover, co-exposure to PVC-MPs and Cd worsened the reduction of pancreas weight and disruption of pancreas function compared to exposure to either substance alone. Furthermore, our research has revealed that exposure to PVC-MPs or Cd disrupted mitochondrial structure, reduced ATP levels by 10 % and 18 %, inhibited antioxidant enzyme activity, and increased malondialdehyde levels by 153.8 % and 232.5 %. It was found that exposure to either PVC-MPs or Cd can induce inflammation and fibrosis in the duck pancreas. Notably, co-exposure to PVC-MPs and Cd exacerbated inflammation and fibrosis, with the content of IL-1, IL-6, and TNF-α increasing by 169 %, 199 %, and 98 %, compared to Cd exposure alone. The study emphasizes the significance of comprehending the potential hazards linked to exposure to these substances. In conclusion, it presents promising preliminary evidence that PVC-MPs accumulate in duck pancreas, and increase the accumulation of Cd. Co-exposure to PVC-MPs and Cd disrupts the structure and function of mitochondria and promotes the development of pancreas inflammation and fibrosis.


Assuntos
Cádmio , Patos , Microplásticos , Estresse Oxidativo , Pâncreas , Animais , Cádmio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Pâncreas/efeitos dos fármacos , Microplásticos/toxicidade , Fibrose , Cloreto de Polivinila/toxicidade , Poluentes Químicos da Água/toxicidade
2.
Pancreas ; 53(2): e193-e198, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38127814

RESUMO

OBJECTIVE: To examine the effects of 6-gingerol (6-G) in overcoming fatty pancreas disease of high-fat high-fructose (HFHF) diet-induced metabolic syndrome in rats. MATERIALS AND METHODS: Male Sprague-Dawley rats were randomly divided into 5 groups. The healthy-control group (normal diet, n = 5) received a standard diet. The HFHF group (HFHF; n = 20) received an HFHF diet and a single-dose intraperitoneal injection of streptozotocin (22 mg/kgBW) at week 8. Metabolic syndrome-confirmed rats received 6-G at doses of 50 (6-G 50, n = 5), 100 (6-G 100, n = 5), and 200 (6-G 200, n = 5) mg/kgBW, respectively, for 8 weeks. All rats were killed at week 16. Pancreatic tissue and blood samples were obtained for histological and amylase analysis. RESULTS: The serum amylase, MDA, mRNA of TNF-α, and IL-6 significantly increased, whereas GPx decreased in the HFHF group as compared with the normal diet group, respectively. Rats in the HFHF group showed pancreatic lipid accumulation and a decreased mean number of α- and ß-cells in the pancreas. Meanwhile, all rats in 6-G at all dose groups showed improvement in all parameters and histopathological scores for lipid accumulation. CONCLUSIONS: 6-Gingerol could attenuate pancreatic lipid accumulation and improve the cell number of α- and ß-cells in the pancreas, leading to improvements in fatty pancreas disease.


Assuntos
Catecóis , Dieta Hiperlipídica , Álcoois Graxos , Síndrome Metabólica , Pâncreas , Animais , Masculino , Ratos , Amilases , Dieta Hiperlipídica/efeitos adversos , Álcoois Graxos/farmacologia , Frutose , Síndrome Metabólica/etiologia , Pâncreas/efeitos dos fármacos , Ratos Sprague-Dawley , Estudos de Casos e Controles
3.
Biomed Pharmacother ; 153: 113456, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36076569

RESUMO

Dexamethasone acts as an immunosuppressive drug and has been used recently in the management of specific coronavirus disease 2019 (COVID-19) cases; however, various adverse effects could limit its use. In this work, we studied the mitigation effects of black pepper oil (BP oil) on glycemic parameters, dyslipidemia, oxidative and nitrosative stress and pancreatic fibrosis in dexamethasone-treated rats. Animals were divided into five groups that were treated with vehicle, dexamethasone (10 mg/kg, SC) or black pepper oil (BP oil, 0.5 mL, or 1 mL/kg) or metformin (50 mg/kg) plus dexamethasone for 4 consecutive days. Serum insulin, blood glucose, total cholesterol, triglycerides, and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) were higher in the dexamethasone group vs the control group and decreased in BP oil and metformin groups relative to the dexamethasone group. Pancreatic nitric oxide, inducible nitric oxide synthase and malondialdehyde levels were increased in the dexamethasone group vs the control group and decreased in BP oil and metformin groups relative to the dexamethasone group. Pancreatic endothelial nitric oxide synthase and reduced glutathione were declined in the dexamethasone group vs the control group. They were increased in BP oil and metformin groups relative to the dexamethasone group. Moreover, the pancreatic islets diameter and collagen deposition were assessed and found to be higher in the dexamethasone group vs the control group. BP oil and metformin groups showed to regress this effect. In conclusion, BP oil may alleviate hyperglycemia, hyperinsulinemia, insulin resistance, dyslipidemia and pancreatic structural derangements and fibrosis by suppressing oxidative stress, increasing endogenous antioxidant levels, modulating nitric oxide signaling, preventing pancreatic stellate cells transition and collagen deposition.


Assuntos
Dexametasona , Metformina , Pâncreas , Piper nigrum , Óleos de Plantas , Animais , Glicemia , Dexametasona/efeitos adversos , Dexametasona/farmacologia , Dislipidemias/tratamento farmacológico , Fibrose , Resistência à Insulina , Metformina/farmacologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Pâncreas/efeitos dos fármacos , Pâncreas/patologia , Piper nigrum/química , Óleos de Plantas/farmacologia , Óleos de Plantas/uso terapêutico , Ratos , Ratos Wistar , Tratamento Farmacológico da COVID-19
4.
Proc Natl Acad Sci U S A ; 119(32): e2208317119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914137

RESUMO

The proper balance of synthesis, folding, modification, and degradation of proteins, also known as protein homeostasis, is vital to cellular health and function. The unfolded protein response (UPR) is activated when the mechanisms maintaining protein homeostasis in the endoplasmic reticulum become overwhelmed. However, prolonged or strong UPR responses can result in elevated inflammation and cellular damage. Previously, we discovered that the enzyme filamentation induced by cyclic-AMP (Fic) can modulate the UPR response via posttranslational modification of binding immunoglobulin protein (BiP) by AMPylation during homeostasis and deAMPylation during stress. Loss of fic in Drosophila leads to vision defects and altered UPR activation in the fly eye. To investigate the importance of Fic-mediated AMPylation in a mammalian system, we generated a conditional null allele of Fic in mice and characterized the effect of Fic loss on the exocrine pancreas. Compared to controls, Fic-/- mice exhibit elevated serum markers for pancreatic dysfunction and display enhanced UPR signaling in the exocrine pancreas in response to physiological and pharmacological stress. In addition, both fic-/- flies and Fic-/- mice show reduced capacity to recover from damage by stress that triggers the UPR. These findings show that Fic-mediated AMPylation acts as a molecular rheostat that is required to temper the UPR response in the mammalian pancreas during physiological stress. Based on these findings, we propose that repeated physiological stress in differentiated tissues requires this rheostat for tissue resilience and continued function over the lifetime of an animal.


Assuntos
AMP Cíclico , Proteínas de Drosophila , Drosophila melanogaster , Estresse do Retículo Endoplasmático , Nucleotidiltransferases , Estresse Fisiológico , Resposta a Proteínas não Dobradas , Animais , Camundongos , Alelos , AMP Cíclico/metabolismo , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Nucleotidiltransferases/deficiência , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Pâncreas/efeitos dos fármacos , Pâncreas/enzimologia , Pâncreas/metabolismo , Pâncreas/fisiopatologia , Estresse Fisiológico/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos
5.
Food Chem Toxicol ; 167: 113315, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35863481

RESUMO

With the widespread use of plastics, microplastics (MPs) and di(2-ethylhexyl) phthalate (DEHP) have become emerging environmental pollutants. The combined toxicity of MPs and DEHP on the mouse pancreas and the specific mechanism of toxicity remain unclear. To establish in vitro and in vivo models to address these questions, mice were continuously exposed to 200 mg/kg/d DEHP and 10 mg/L MPs for 4 weeks. In vitro, MIN-6 cells were treated with 200 µg/mL MPs and 200 µM DEHP for 24 h. Based on toxicity assessed using CCK8 of the equivalent TU binary mixture, the IC50 of the TU-mix of DEHP and MPs 0.692 < 0.8, indicating a synergistic effect of the two toxicants. Meanwhile, our data revealed that compared to the control group, MPs and DEHP combined treatment increased ROS levels, inhibited the activity, and enhanced the expression of GRP78, and CHOP. Simultaneously, activated CHOP decreased the expression of Bcl-2, and increased the expression of Bax. In conclusion, DEHP and MPs synergistically induce oxidative stress, and activate the GRP78/CHOP/Bcl-2 pathway to induce pancreatic apoptosis in mice. Our finding provides a new direction for the research on the specific mechanism of MPs and DEHP combined toxicity.


Assuntos
Dietilexilftalato , Chaperona BiP do Retículo Endoplasmático , Genes bcl-2 , Microplásticos , Estresse Oxidativo , Pâncreas , Fator de Transcrição CHOP , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Dietilexilftalato/toxicidade , Chaperona BiP do Retículo Endoplasmático/genética , Chaperona BiP do Retículo Endoplasmático/metabolismo , Genes bcl-2/genética , Genes bcl-2/fisiologia , Camundongos , Microplásticos/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Pâncreas/patologia , Ácidos Ftálicos , Plásticos , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo
6.
Nat Commun ; 13(1): 759, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35140221

RESUMO

Despite the remarkable success of immunotherapy in many types of cancer, pancreatic ductal adenocarcinoma has yet to benefit. Innate immune cells are critical to anti-tumor immunosurveillance and recent studies have revealed that these populations possess a form of memory, termed trained innate immunity, which occurs through transcriptomic, epigenetic, and metabolic reprograming. Here we demonstrate that yeast-derived particulate ß-glucan, an inducer of trained immunity, traffics to the pancreas, which causes a CCR2-dependent influx of monocytes/macrophages to the pancreas that display features of trained immunity. These cells can be activated upon exposure to tumor cells and tumor-derived factors, and show enhanced cytotoxicity against pancreatic tumor cells. In orthotopic models of pancreatic ductal adenocarcinoma, ß-glucan treated mice show significantly reduced tumor burden and prolonged survival, which is further enhanced when combined with immunotherapy. These findings characterize the dynamic mechanisms and localization of peripheral trained immunity and identify an application of trained immunity to cancer.


Assuntos
Antineoplásicos/farmacologia , Imunidade , Pâncreas/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Bactérias , Feminino , Fungos , Imunidade Inata/imunologia , Lectinas Tipo C , Masculino , Camundongos , Células Mieloides , Receptores CCR2/genética , beta-Glucanas/imunologia , Neoplasias Pancreáticas
7.
Int J Mol Sci ; 23(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35163806

RESUMO

Prevalence of type 2 diabetes increased from 2.5% of the US population in 1990 to 10.5% in 2018. This creates a major public health problem, due to increases in long-term complications of diabetes, including neuropathy, retinopathy, nephropathy, skin ulcers, amputations, and atherosclerotic cardiovascular disease. In this review, we evaluated the scientific basis that supports the use of physiologic insulin resensitization. Insulin resistance is the primary cause of type 2 diabetes. Insulin resistance leads to increasing insulin secretion, leading to beta-cell exhaustion or burnout. This triggers a cascade leading to islet cell destruction and the long-term complications of type 2 diabetes. Concurrent with insulin resistance, the regular bursts of insulin from the pancreas become irregular. This has been treated by the precise administration of insulin more physiologically. There is consistent evidence that this treatment modality can reverse the diabetes-associated complications of neuropathy, diabetic ulcers, nephropathy, and retinopathy, and that it lowers HbA1c. In conclusion, physiologic insulin resensitization has a persuasive scientific basis, significant treatment potential, and likely cost benefits.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Resistência à Insulina , Insulina Regular Humana/uso terapêutico , Diabetes Mellitus Tipo 2/metabolismo , Hemoglobinas Glicadas/metabolismo , Humanos , Secreção de Insulina/efeitos dos fármacos , Insulina Regular Humana/farmacologia , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo
8.
Biomed Pharmacother ; 146: 112587, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35062061

RESUMO

Chronic alcohol consumption, which is observed worldwide, can damage pancreatic tissue and promote pancreatitis. Rhubarb is a widely used traditional Chinese herbal medicine for treating pancreatitis in China. However, few pharmacological studies have investigated its epigenetic regulation. In this study, we investigated whether chronic exposure to alcohol can alter inflammatory gene expression and the epigenetic regulation effect of cooked rhubarb in the pancreatic tissue of rats. First, changes in inflammatory cytokine DNA methylation (IL-10, IL-1α, TNF-α, NF-κB and TGF-ß) were detected in pancreatic tissue of Sprague-Dawley rats with varying alcohol exposure times (4, 6, 8, or 12 weeks), and then with varying doses of cooked rhubarb treatment (3, 6, or 12 g/day). DNA methylation levels, related RNA concentrations and protein expression of specific inflammatory cytokines, and histopathological score were analysed in pancreatic tissue of Sprague-Dawley rats. The results showed that chronic alcohol exposure (8 weeks) reduced the level of IL-1α DNA methylation and increased its protein expression in acinar cells (P < 0.05). In the acinar cells, the level of IL-10 DNA methylation increased, resulting in a reduction of protein expression (P < 0.05). Simultaneously, chronic alcohol exposure increased the pathological damage to the pancreas (P < 0.05). Finally, cooked rhubarb treatment (3 g/kg/day) effectively alleviated these changes in pancreatic tissue from chronic alcohol exposure (P < 0.05). These results indicate that chronic exposure to alcohol leads to changes in DNA methylation and protein expression of inflammatory genes, and cooked rhubarb may have a protective effect on the pancreatic tissue of rats.


Assuntos
Epigênese Genética , Etanol/metabolismo , Medicina Tradicional Chinesa , Pâncreas/patologia , Rheum , Animais , China , Metilação de DNA/efeitos dos fármacos , Humanos , Interleucina-10/metabolismo , Interleucina-1alfa/metabolismo , Masculino , Pâncreas/efeitos dos fármacos , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo
9.
Inflammation ; 45(1): 45-58, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35061151

RESUMO

We have previously shown that diallyl disulfide (DADS) protects mice against cerulein-induced acute pancreatitis (AP) and associated lung injury. However, the molecular mechanisms underlying its effect and the components involved have not been studied. We hypothesized that DADS may reduce TNF-α, CSE expression, H2S production, STAT3, and NF-κB activation and induce SOCS3 expression through peroxisome proliferator-activated receptor γ (PPAR-γ) pathway in cerulein-induced mice. Male Swiss mice were treated with hourly intraperitoneal injections of cerulein (50 µg/kg) for 6 h. Diallyl disulfide (200 µg/kg) was administered in the presence or absence of PPAR-γ antagonist GW9662 (0.3 mg/kg) (i.p) 1 h after the induction of AP. Our findings revealed that DADS blocked TNF-α, CSE expression, H2S production, and STAT3, and NF-κB activation was reversed by GW9662. Furthermore, GW9662 abrogated DADS-induced SOCS3 expression. The results show for the first that DADS-induced anti-inflammatory effect in acute pancreatitis is regulated through PPAR-γ.


Assuntos
Compostos Alílicos/farmacologia , Anti-Inflamatórios/farmacologia , Dissulfetos/farmacologia , Lesão Pulmonar/prevenção & controle , NF-kappa B/metabolismo , PPAR gama/metabolismo , Pancreatite/prevenção & controle , Fator de Transcrição STAT3/metabolismo , Compostos Alílicos/uso terapêutico , Animais , Anti-Inflamatórios/uso terapêutico , Ceruletídeo , Dissulfetos/uso terapêutico , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/fisiopatologia , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/metabolismo , Lesão Pulmonar/fisiopatologia , Masculino , Camundongos , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Pâncreas/fisiopatologia , Pancreatite/induzido quimicamente , Pancreatite/metabolismo , Pancreatite/fisiopatologia , Distribuição Aleatória , Transdução de Sinais/efeitos dos fármacos
10.
Food Funct ; 13(1): 437-450, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34918725

RESUMO

Amomum tsao-ko Crevost et Lemarie (A. tsao-ko) is a well-known dietary spice and traditional Chinese medicine. This study aimed to identify the flavonoids in A. tsao-ko and evaluate their antioxidant and antidiabetic activities in in vitro and in vivo studies. A. tsao-ko methanol extracts possessed a high flavonoid content (1.21 mg QE per g DW) and a total of 29 flavonoids were identified by employing UPLC-MS/MS. In vitro, A. tsao-ko demonstrated antioxidant activity (ORAC value of 34276.57 µM TE/100 g DW, IC50 of ABTS of 3.49 mg mL-1 and FRAP value of 207.42 µM Fe2+ per g DW) and α-amylase and α-glucosidase inhibitory ability with IC50 values of 14.23 and 1.76 mg mL-1, respectively. In vivo, type 2 diabetes mellitus (T2DM) models were induced by a combined high-fat diet (HFD) and streptozotocin (STZ) injection in rats. Treatment with the A. tsao-ko extract (100 mg freeze-dried powder per kg bw) for 6 weeks could significantly improve impaired glucose tolerance, decrease the levels of fasting blood glucose (FBG), insulin, and malondialdehyde (MDA), and increase the superoxide dismutase (SOD) level. Histopathology revealed that the A. tsao-ko extract preserved the architecture and function of the pancreas. In conclusion, the flavonoid composition of A. tsao-ko exhibits excellent antioxidant and antidiabetic activity in vitro and in vivo. A. tsao-ko could be a novel natural material and developed as a related functional food and medicine in T2DM management.


Assuntos
Amomum/química , Antioxidantes , Diabetes Mellitus Experimental , Flavonoides , Hipoglicemiantes , Animais , Antioxidantes/análise , Antioxidantes/química , Antioxidantes/farmacologia , Glicemia/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Medicamentos de Ervas Chinesas , Flavonoides/análise , Flavonoides/química , Flavonoides/farmacologia , Hipoglicemiantes/análise , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Masculino , Pâncreas/efeitos dos fármacos , Pâncreas/patologia , Ratos , Ratos Sprague-Dawley , Organismos Livres de Patógenos Específicos
11.
Biomed Pharmacother ; 146: 112495, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34891123

RESUMO

Red ginseng is a traditional Chinese herbal medicine that has long been used to treat diabetes, and its blood sugar-lowering activity has been confirmed. However, the mechanism of action of red ginseng on type 2 diabetes mellitus (T2DM) at the metabolic level is still unclear. The purpose of this study is to investigate the effect of red ginseng extract in the treatment of T2DM rats based on untargeted metabolomics. The rat model of T2DM was induced by a high-fat diet (HFD) combined with streptozotocin (STZ), and serum samples were collected after four weeks of treatment. The ultra-high-performance liquid chromatography coupled with Q Exactive HF-X Mass Spectrometer was used to analyze the level of metabolites in serum to evaluate the differences in metabolic levels between different groups. The results of biochemical analysis showed that red ginseng extract intervention significantly improved the levels of total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), serum glucose (GLU), and fasting insulin (FINS) after four weeks. Orthogonal partial least squares discriminant analysis was used to study the overall changes of rat metabolomics. After the intervention of red ginseng extract, 50 biomarkers showed a callback trend. Metabolic pathway enrichment analysis showed that the regulated pathways were D-arginine and D-ornithine metabolism, D-glutamine and D-glutamate metabolism, taurine and hypotaurine metabolism, arginine biosynthesis, and tryptophan metabolism. Generally, the results demonstrated that red ginseng extract had beneficial effects on T2DM, which could be mediated via ameliorating the metabolic disorders.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Panax , Extratos Vegetais/uso terapêutico , Aminoácidos/metabolismo , Animais , Biomarcadores/sangue , Cromatografia Líquida de Alta Pressão , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Hipoglicemiantes/farmacologia , Metabolismo dos Lipídeos , Masculino , Redes e Vias Metabólicas/efeitos dos fármacos , Metabolômica , Pâncreas/efeitos dos fármacos , Pâncreas/patologia , Fitoterapia , Extratos Vegetais/farmacologia , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
12.
JCI Insight ; 7(2)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34847076

RESUMO

Despite decades of research, there is no specific therapy for acute pancreatitis (AP). In the current study, we have evaluated the efficacy of pirfenidone, an antiinflammatory and antifibrotic agent that is approved by the FDA for treatment of idiopathic pulmonary fibrosis (IPF), in ameliorating local and systemic injury in AP. Our results suggest that treatment with pirfenidone in therapeutic settings (e.g., after initiation of injury), even when administered at the peak of injury, reduces severity of local and systemic injury and inflammation in multiple models of AP. In vitro evaluation suggests that pirfenidone decreases cytokine release from acini and macrophages and disrupts acinar-macrophage crosstalk. Therapeutic pirfenidone treatment increases IL-10 secretion from macrophages preceding changes in histology and modulates the immune phenotype of inflammatory cells with decreased levels of inflammatory cytokines. Antibody-mediated IL-10 depletion, use of IL-10-KO mice, and macrophage depletion experiments confirmed the role of IL-10 and macrophages in its mechanism of action, as pirfenidone was unable to reduce severity of AP in these scenarios. Since pirfenidone is FDA approved for IPF, a trial evaluating the efficacy of pirfenidone in patients with moderate to severe AP can be initiated expeditiously.


Assuntos
Células Acinares/metabolismo , Fibrose , Interleucina-10/imunologia , Macrófagos/metabolismo , Pâncreas , Pancreatite , Piridonas/farmacologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Células Cultivadas , Citocinas/classificação , Citocinas/imunologia , Modelos Animais de Doenças , Fibrose/etiologia , Fibrose/prevenção & controle , Camundongos , Pâncreas/efeitos dos fármacos , Pâncreas/imunologia , Pâncreas/lesões , Pâncreas/patologia , Pancreatite/tratamento farmacológico , Pancreatite/imunologia , Comunicação Parácrina/imunologia , Transdução de Sinais/imunologia
13.
Dig Dis Sci ; 67(2): 524-535, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33555515

RESUMO

OBJECTIVE: Alcohol consumption is always the main cause of acute pancreatitis (AP). It has been reported that alcohol exerts direct damage to the pancreas. However, the specific role of alcohol during AP needs to be investigated. This study aims to examine the effects of alcohol in cerulein-induced AP and the role of the AMPK pathway. METHODS: Human subjects from operations, cerulein-induced AP rat, and cerulein-stimulated AR42J cell line were enrolled in this study. Electron microscopy was employed for observation of cell morphology, immunohistochemistry for identification of cells, ELISA for detection of inflammation factors, Annexin V/PI double staining for evaluation of cell apoptosis, immunofluorescence for assessment of autophagic flux, oil red O staining for examination of lipid droplet accumulation, and Western blot for measurement of expressions of proteins related to autophagy, apoptosis, and AMPK signal pathway. PI3K inhibitor 3-MA and AMPK inhibitor BML-275 were utilized for investigation of the relationship between impaired autophagic flux and the AMPK pathway by inhibiting or stimulating the formation of autophagosome. RESULTS: Alcohol consumption caused lipid droplet accumulation in the pancreas, and it also activated AMPK signaling pathway, thus aggravating the autophagic flux during AP. Alcohol up-regulated the expressions of anti-apoptotic proteins during the induction of AP to inhibit cell apoptosis and enhance cell necrosis. Inhibition of autophagosome formation by AMPK inhibitor BML-275 ameliorated the decreased cell viability caused by alcohol and cerulein in vitro. CONCLUSION: Alcohol aggravates AP progression by impairing autophagic flux and enhancing cell autophagy through the AMPK signaling pathway.


Assuntos
Adenilato Quinase/metabolismo , Autofagia/efeitos dos fármacos , Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Pâncreas/efeitos dos fármacos , Pancreatite Alcoólica/metabolismo , Adenilato Quinase/antagonistas & inibidores , Adenilato Quinase/efeitos dos fármacos , Animais , Linhagem Celular , Ceruletídeo/toxicidade , Humanos , Pancreatite/induzido quimicamente , Pancreatite/metabolismo , Pancreatite/patologia , Pancreatite Alcoólica/patologia , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Ratos , Transdução de Sinais
14.
J Nutr Biochem ; 99: 108870, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34563663

RESUMO

Emerging evidence has deemed vitamin D as a potential candidate for the intervention of type 2 diabetes (T2D). Herein, we explored the underlying mechanisms of T2D prevention by vitamin D, concentrating on pancreatic iron deposition reported recently. Zucker diabetic fatty (ZDF) rats were treated by vitamin D, with age-matched Zucker lean rats as control. As expected, vitamin D treatment for ZDF rats normalized islet morphology and ß-cell function. Moreover, vitamin D alleviated iron accumulation and apoptosis in pancreatic cells of ZDF rats, accompanied by lowered divalent metal transporter 1 (DMT1) expression. Consistently, similar results were observed in high glucose-stimulated INS-1 cells treated with or without vitamin D. Nuclear factor-κB (NF-κB), a transcription factor involving DMT1 regulation, was activated in pancreases of ZDF rats and INS-1 cells exposed to high glucose, but inactivated by vitamin D or BAY 11-7082, a NF-κB inhibitor. Futhermore, IL-1ß functioning as NF-κB activator abolished the suppression of NF-κB activation, DMT1 induction and the attenuation of apoptosis as a consequence of vitamin D incubation. Our study showed that iron overload in pancreas may contribute to T2D pathogenesis and uncovered a potentially protective role for vitamin D on iron deposition of diabetic pancreas through NF-κB- DMT1 signaling.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Ferro/metabolismo , NF-kappa B/metabolismo , Pâncreas/metabolismo , Vitamina D/administração & dosagem , Animais , Apoptose , Proteínas de Transporte de Cátions/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Humanos , Proteínas I-kappa B/genética , Proteínas I-kappa B/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Masculino , NF-kappa B/genética , Pâncreas/citologia , Pâncreas/efeitos dos fármacos , Ratos , Ratos Zucker , Transdução de Sinais/efeitos dos fármacos
15.
Braz. J. Pharm. Sci. (Online) ; 58: e20065, 2022. graf
Artigo em Inglês | LILACS | ID: biblio-1403720

RESUMO

Abstract Glucose exposure induces toxic effects on the function of the pancreatic islets. Moreover, myricitrin as a flavonoid glycoside may have favorable effects on insulin secretion of Langerhans islets. The present study aimed to investigate the effect of Myricitrin and its solid lipid nanoparticles (SLN) on the insulin secretion as well as the content of isolated pancreatic islets from male mice. In this experimental study, Langerhans islets were separated from adult male NMRI mice using the collagenase method. The insulin secretion and content of islets were assessed in glucose-containing medium (2.8, 5.6, and 16.7mM). Further, islets treated were prepared by the administration of Myricitrin and its SLN (1, 3 and 10µM). Myricitrin 3µM, and SLN containing Myricitrin 3 and 10µM increased insulin secretion in medium containing glucose concentration 2.8mM. Accordingly, this variable increased in Myricitrin 3 and 10µM, SLN containing Myricitrin 1, 3, and 10µM utilization as well as glucose concentration 5.6mM. Afterward, the insulin secretion increased in medium containing 16.7mM glucose after the addition of Myricitrin and SLN containing Myricitrin 1, 3, and 10µM. Also, the insulin content increased in Myricitrin and SLN containing Myricitrin 1, 3, and 10µM administered groups in all medium containing glucose concentrations. Myricitrin and its SLN increased islets insulin secretion and content in low, moderate, and high glucose concentration mediums


Assuntos
Animais , Masculino , Camundongos , Pâncreas/efeitos dos fármacos , Ilhotas Pancreáticas/anormalidades , Secreção de Insulina/imunologia , Organização e Administração , Nanopartículas , Insulina/efeitos adversos
16.
Int J Mol Sci ; 22(23)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34884717

RESUMO

Gestational diabetes mellitus results, in part, from a sub-optimal ß-cell mass (BCM) during pregnancy. Artemisinins were reported to increase BCM in models of diabetes by α- to ß-cell conversion leading to enhanced glucose tolerance. We used a mouse model of gestational glucose intolerance to compare the effects of an artemisinin (artesunate) on glycemia of pregnant mice with vehicle treatment (acetone) or no treatment. Animals were treated daily from gestational days (GD) 0.5 to 6.5. An intraperitoneal glucose tolerance test was performed prior to euthanasia at GD18.5 or post-partum. Glucose tolerance was significantly improved in both pregnant and non-pregnant mice with both artesunate and vehicle-alone treatment, suggesting the outcome was primarily due to the acetone vehicle. In non-pregnant, acetone-treated animals, improved glucose tolerance was associated with a higher BCM and a significant increase in bihormonal insulin and glucagon-containing pancreatic islet cells, suggesting α- to ß-cell conversion. BCM did not differ with treatment during pregnancy or post-partum. However, placental weight was higher in acetone-treated animals and was associated with an upregulation of apelinergic genes. Acetone-treated animals had reduced weight gain during treatment despite comparable food consumption to non-treated mice, suggesting transient effects on nutrient uptake. The mean duodenal and ileum villus height was reduced following exposure to acetone. We conclude that acetone treatment may mimic transient fasting, resulting in a subsequent improvement in glucose tolerance during pregnancy.


Assuntos
Acetona/farmacologia , Antimaláricos/uso terapêutico , Artesunato/uso terapêutico , Diabetes Gestacional/tratamento farmacológico , Pâncreas/efeitos dos fármacos , Animais , Apelina/metabolismo , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Jejum , Feminino , Intestinos/efeitos dos fármacos , Placenta/efeitos dos fármacos , Placenta/metabolismo , Gravidez , Resultado da Gravidez
17.
Biosci Rep ; 41(12)2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34724560

RESUMO

BACKGROUND: The study was aimed to investigate the potential therapeutic effect of Mori folium aqueous extracts (MFAE) on type 2 diabetes mellitus (T2DM) in vivo. METHODS AND RESULTS: A rat model of T2DM was established with the combination of high sugar and high-fat diet (HSFD) and streptozotocin (STZ). The T2DM rats were administrated with low (2 g.kg-1) and high (5 g.kg-1) doses of MFAE for 60 consecutive days. The biochemical indices of glucose metabolism disorders, insulin resistance and oxidative stress were observed. The results indicated that MFAE significantly promoted the synthesis of hepatic glycogen, reduced the levels of fasting blood glucose and fasting blood insulin, and improved the insulin sensitivity index (ISI). MFAE administration also remarkably increased the levels of superoxide dismutase (SOD) and reduced the levels of malondialdehyde (MDA). CONCLUSION: MFAE showed a therapeutic effect on T2DM with the bioative effect of improve glucose metabolism disorders, decrease insulin resistance, and ameliorate the antioxidative ability.


Assuntos
Glicemia/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacologia , Morus , Pâncreas/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Biomarcadores/sangue , Glicemia/metabolismo , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/sangue , Hipoglicemiantes/isolamento & purificação , Insulina/sangue , Resistência à Insulina , Masculino , Malondialdeído/sangue , Morus/química , Estresse Oxidativo/efeitos dos fármacos , Pâncreas/metabolismo , Pâncreas/patologia , Extratos Vegetais/isolamento & purificação , Folhas de Planta , Ratos Sprague-Dawley , Superóxido Dismutase/sangue
18.
Sci Rep ; 11(1): 22717, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34811400

RESUMO

Retinoic acid (RA) is a key signal for the specification of the pancreas. Still, the gene regulatory cascade triggered by RA in the endoderm remains poorly characterized. In this study, we investigated this regulatory network in zebrafish by combining RNA-seq, RAR ChIP-seq and ATAC-seq assays. By analysing the effect of RA and of the RA receptor (RAR) inverse-agonist BMS493 on the transcriptome and on the chromatin accessibility of endodermal cells, we identified a large set of genes and regulatory regions regulated by RA signalling. RAR ChIP-seq further defined the direct RAR target genes in zebrafish, including hox genes as well as several pancreatic regulators like mnx1, insm1b, hnf1ba and gata6. Comparison of zebrafish and murine RAR ChIP-seq data highlighted the conserved direct target genes and revealed that some RAR sites are under strong evolutionary constraints. Among them, a novel highly conserved RAR-induced enhancer was identified downstream of the HoxB locus and driving expression in the nervous system and in the gut in a RA-dependent manner. Finally, ATAC-seq data unveiled the role of the RAR-direct targets Hnf1ba and Gata6 in opening chromatin at many regulatory loci upon RA treatment.


Assuntos
Genômica , Pâncreas/efeitos dos fármacos , Receptores do Ácido Retinoico/agonistas , Transcriptoma , Tretinoína/farmacologia , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Montagem e Desmontagem da Cromatina , Sequenciamento de Cromatina por Imunoprecipitação , Fatores de Transcrição GATA/genética , Fatores de Transcrição GATA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fator 1-beta Nuclear de Hepatócito/genética , Fator 1-beta Nuclear de Hepatócito/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Pâncreas/embriologia , Pâncreas/metabolismo , RNA-Seq , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
19.
Biomed Pharmacother ; 144: 112293, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34634559

RESUMO

Acute pancreatitis (AP) is a common serious acute condition of the digestive system that remains a clinical challenge. Severe acute pancreatitis (SAP) in particular is characterized by high morbidity and mortality. The present study was designed to investigate the protective effect of Galangin (Gal), a natural flavonol obtained from lesser galangal, on L-arginine-induced SAP in mice and in AR42J cells. Amylase and lipase activities were measured and the histopathology of the pancreas, lung, and kidney was evaluated. Inflammation and oxidative stress were assessed using ELISA, western blotting, RT-PCR, and immunohistochemistry. Gal was shown to reduce proinflammatory cytokine production and reactive oxygen species (ROS) generation in vivo and in vitro. L-arginine treatment reduced the expression of components of the nuclear factor E2-related factor 2 (Nrf2) signaling pathway and the downstream protein heme oxygenase-1 (HO-1) in mice, whereas Gal increased their expression. Furthermore, the Nrf2/HO-1 pathway inhibitor brusatol prevented the anti-inflammatory and antioxidant effects of Gal in mice with SAP. Taken together, our results imply that Gal has protective effects in L-arginine-induced SAP that are induced by the upregulation of the Nrf2/HO-1 pathway, which has anti-inflammatory and antioxidant effects. Thus, Gal may represent a promising treatment for SAP.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Flavonoides/farmacologia , Heme Oxigenase (Desciclizante)/metabolismo , Heme Oxigenase-1/metabolismo , Proteínas de Membrana/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Pâncreas/efeitos dos fármacos , Pancreatite/prevenção & controle , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/prevenção & controle , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/prevenção & controle , Animais , Linhagem Celular , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Pâncreas/enzimologia , Pâncreas/patologia , Pancreatite/enzimologia , Pancreatite/patologia , Ratos , Índice de Gravidade de Doença , Transdução de Sinais
20.
Mediators Inflamm ; 2021: 9940009, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712101

RESUMO

Alloxan (ALX) and streptozotocin (STZ) are extensively used to induce type 1 diabetes (T1D) in animal models. This study is aimed at evaluating the differences in immune parameters caused by ALX and STZ. T1D was induced either with ALX or with STZ, and the animals were followed for up to 180 days. Both ALX and STZ induced a decrease in the total number of circulating leukocytes and lymphocytes, with an increase in granulocytes when compared to control mice (CT). STZ-treated mice also exhibited an increase in neutrophils and a reduction in the lymphocyte percentage in the bone marrow. In addition, while the STZ-treated group showed a decrease in total CD3+, CD4-CD8+, and CD4+CD8+ T lymphocytes in the thymus and CD19+ B lymphocytes in the pancreas and spleen, the ALX group showed an increase in CD4-CD8+ and CD19+ only in the thymus. Basal levels of splenic interleukin- (IL-) 1ß and pancreatic IL-6 in the STZ group were decreased. Both diabetic groups showed atrophy of the thymic medulla and degeneration of pancreatic islets of Langerhans composed of inflammatory infiltration and hyperemia with vasodilation. ALX-treated mice showed a decrease in reticuloendothelial cells, enhanced lymphocyte/thymocyte cell death, and increased number of Hassall's corpuscles. Reduced in vitro activation of splenic lymphocytes was found in the STZ-treated group. Furthermore, mice immunized with ovalbumin (OVA) showed a more intense antigen-specific paw edema response in the STZ-treated group, while production of anti-OVA IgG1 antibodies was similar in both groups. Thereby, important changes in immune cell parameters in vivo and in vitro were found at an early stage of T1D in the STZ-treated group, whereas alterations in the ALX-treated group were mostly found in the chronic phase of T1D, including increased mortality rates. These findings suggest that the effects of ALX and STZ influenced, at different times, lymphoid organs and their cell populations.


Assuntos
Aloxano/toxicidade , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Tipo 1/imunologia , Linfócitos/efeitos dos fármacos , Estreptozocina/toxicidade , Animais , Glicemia/análise , Citocinas/biossíntese , Linfócitos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pâncreas/efeitos dos fármacos , Pâncreas/patologia , Baço/efeitos dos fármacos , Baço/imunologia , Timo/efeitos dos fármacos , Timo/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...